

Image Processing on an FPGA for Low

Cost and Low Power Applications on

Autonomous Vehicles

By

Benjamin Huntsman

Contents
Introduction .. 4

Why System Verilog? .. 4

Packages .. 4

Interfaces .. 4

The Architecture ... 5

Cell Processor .. 5

An External View ... 5

An Internal View.. 5

Image Processor .. 6

An External View ... 6

An Internal View.. 7

 .. 8

Validation .. 9

Simulation ... 9

XSim .. 9

Questa Sim .. 9

Emulation .. 9

Standalone Mode .. 9

TBX .. 9

File Structure ... 10

Source Code .. 10

Documentation ... 10

Version Control ... 10

Abstract— A solution to image processing that

offers simple expandability and configurability is

explained. Using synthesizable System Verilog

and simulation coupled with emulation the

development was accelerated. This paper

explores the design, implementation, and

verification of a hardware accelerated image

processor.

Introduction
Computer vision has become an increasingly data intensive subject with images taken for a wide variety

of purposes, from filters for cellphone cameras to autonomous vehicles. Computer vision algorithms are

complex and continue to become more so. This comes at the cost of higher power requirements for

CPUs and slower run times. The implementation of an FPGA based solution for accelerated image

processing brings faster processing speeds and a lower power usage ideal for use with autonomous

vehicles.

Why System Verilog?
An image processor requires a complex architecture with fast transfer of data between modules. System

Verilog offers constructs and easily understandable syntax that helps ensure that the system is more

maintainable. Data structures and interfaces simplify the design of each module from its ports to the

flow of data within. It also provides the capability of packaging parameters and user defined type

definitions for partitioning code into more readable and maintainable sections.

Packages
Packages contain type definitions and parameters to be used in conjunction with a specific module or

interface. The package gives a designer one location for configuring that module or interface. For

example, the cell processor package contains parameters that if changed will alter the cell processors

size or easily reconfigure it to a different color space. It also includes the functions that represent all of

the possible operations in the cell processor. (See Packages.sv for more details)

Interfaces
Communications between modules is accomplished through those module’s ports. By implementing an

interface for this communication, the port definitions for a specific type of communications or for a

specific module can be defined in one place and more easily implemented when connecting with other

modules. It is possible to have the functions to accomplish these communications be defined within the

interface. The cell processor uses an interface to communicate with the image processor. Each cell

processor connects to the image processor through its own interface and the ports for communicating

are defined for both sides as modports within the interface. Again, giving one place to change port

communications for both sides; simplifying the implementation. (See CellProcessor_int.sv for more

details)

The Architecture

Cell Processor

An External View

Externally the cell processor communicates
with the image processor via an interface.
This interface is made of the input and
output ports shown in Figure 1. As the cell
processor will operate on whatever data is
being held on its inputs every clock it is not
necessary to buffer data internally. Currently
all the internal logic is combinational. As
more complex algorithms are added, it may
be necessary to have internal buffering. This
would not be for data flow but for holding
temporary values instead.

In Code Block 1 it shows the System Verilog syntax for
defining the cell processor interface. You will see each
of the input and outputs defined and then two
modports. The modports are used by the modules that
will be connecting using this interface and defines the
ports appropriately for each side of the
communications path. The two modports are cellPorts,
which is for the cell processor, and imagePorts, which
is for the image processor.

An Internal View

The Cell

Internally the cell processor is made of an N x N matrix

of pixels, see Figure 2. The value of N is defined in

Packages.sv. There are actually four parameters

that can be changed to in Packages.sv that will

Figure 1: Cell Processor Block Diagram

interface cellProcessor_int(input logic clk, rst);

 logic [cellDepth - 1:0] cellA;

 logic [cellDepth - 1:0] cellB;

 pixel_t userInput;

 logic [opCodeWidth - 1:0] opcode;

 pixel_t processedPixel;

 modport cellPorts (

 input clk,

 input rst,

 input cellA,

 input cellB,

 input userInput,

 input opcode,

 output processedPixel

);

 modport imagePorts (

output cellA,

output cellB,

output userInput,

output opcode

);

endinterface

Code Block 1: Cell Processor Interface

Figure 2: Cell Processor Model

configure the cell processor to work with whatever color space and cell configuration desired, see Code

Block 2. This makes this architecture suitable for a variety of applications.

A Pixel

A pixel is made of one or more color channels

with each represented by one or more bits. A

black and white image can be defined by a single

bit per pixel with ‘0’ for black and ‘1’ for white.

Another is monochrome which has a single color

channel, normally greyscale, with the bits

representing the shade of the color. Whereas

Red Green Blue color space or RGB uses three

color channels denoted by the name of the color

space.

In order to allow for the processor to work in any color space each function steps through each color

channel using an indexed part select instead of using System Verilog’s part naming capability. For more

information about how this works see Syntax Notes in the header of Packages.sv for more details.

Functions

Each operation given by an opcode needs to have a function defined. Each function has a single cell, two

cells, or a cell and a user input given as a pixel for input data. Their output is a single pixel. This is the

way that matrix convolution works and as image processing uses some very complex algorithms that will

involve some form of convolution or another, this is an essential aspect of the cell processor. It is also

necessary that bounds checking are accomplished for each operation. This ensures that operations act

appropriately when the color is saturated or not.

Image Processor

An External View

The image processor receives a single pixel at

a time for any of its image inputs. This is

because it is the smallest piece of data the

cell processors will be working with. The

image processor assumes that input data is

valid and that it is being entered in the

appropriate order, that being, from top left of

the image to bottom right. Moving left to

right and top to bottom. This ordering is

necessary as the internal architecture sets up

the pixels in this manner. It also assumes that

whatever is connected to it is passing data on

parameter opCodeWidth = 4;

parameter channelWidth = 8;

parameter channelNum = 3;

parameter cellN = 3;

parameter pixelDepth = channelWidth * channelNum;

parameter cellDepth = pixelDepth * cellN * cellN;

parameter centerPixel = (cellN * cellN - 1) >> 1;

parameter divShift = $clog2(cellN * cellN);

parameter boundUp = 1 << channelWidth + 1;

Code Block 2: Cell Processor Configuration Parameters

Figure 3: Image Processor Block Diagram

appropriate boundaries and understands the delay from input to output and will operate accordingly.

Communication with the image processor is also accomplished via an interface as seen in .

An Internal View

The architecture used to processor images is

visualized in Figure 4 and described hereafter. It is a

hybrid of serial and parallel processing. Elements

within the image processor and the parameters for

using it are found in the image processing package.

As the image processor and the cell processor use

many of the same elements, the image processor

gets most of its parameters from the cell processor

package. The only additional parameter is for

defining the image width.

The pixels are brought into the processor using an

image width wide (or a single row) shift register of

pixels. Once the shift register is full that row of the

image is shifted into a parallel shift register that we

could call the cell processor buffer. This buffer is

sized to fit a single row of cells to be used as inputs

into the parallel cell processors. As the architecture

is setup for normal matrix convolution algorithms,

only image width – 2 cell processors are necessary.

The cell processors overlap by two pixels so that

their centers are adjacent. As each new row comes

into the cell processor buffer, it as if the processors

were moving down a row of the image matrix.

Once processed through the cell processors, the

resulting row is shifted into another set of parallel

shift registers, but this time image width – 2 wide

due to the loss of a pixel on either side of the image.

This may seem like a lot, but in an image with high resolution it won’t even be noticed. This parallel shift

register is only used to allow for a clock delay of two clocks. This is also because the loss of the two

pixels.

Finally, the row is shifted into a serial shift register to be shifted out of the processor. This architecture is

fairly simple, but allows the data to flow in logical manner quickly through the processor. It also allows

for the data to flow in and out of the image processor on row boundaries. This simplifies the operation

as well.

interface ImageProcessor_int(

input logic clk, rst);

 pixel_t pixelA;

 pixel_t pixelB;

 pixel_t userInput;

 logic [opCodeWidth - 1:0] opcode;

 pixel_t processedPixel;

 modport intPorts (

input clk,

 input rst,

 input pixelA,

 input pixelB,

 input userInput,

 input opcode,

 output processedPixel

);

 modport extPorts (

output pixelA,

output pixelB,

 output userInput,

 output opcode

);

endinterface

Code Block 3: Image Processor Interface

Figure 4: Image Processor Architecure

Validation

Simulation
Xilinix’s XSim and Mentor Graphics’ Questa Sim were both used in initial simulation testing of the basic

design. This continued to be method of choice until a framework was made to be able to use the design

in emulation. Although it is possible to verify a design in simulation, there are too many differences

between simulation and how something tests after synthesis.

To run the simulation, you will need to install Xilinx’s Vivado Suite to get XSim or use Questa Sim on

PSU’s Linux Red Hat server. The processor for simulation is different for both, but all the necessary

elements are found in the project and the instructions follow:

XSim

Questa Sim

Emulation
Mentor Graphics has graced the school with a very expensive and very useful piece of equipment called

the Veloce Emulator. Once the framework was finished for using Veloce, all testing and continued

development was conducted on the Veloce emulator. The emulator allows for checking for

synthesizability and validation of design, where simulation would only validate. As this design is

something that will actually be run on an FPGA, synthesizability is a requirement with everything that is

done.

The emulator provides several modes. The two that were used in this project were Standalone, and TBX.

Standalone mode runs everything directly on the emulator itself and does not take advantage of the

advanced capabilities of the emulator. TBX, on the other hand, utilizes co-simulation capabilities. This

means that the test bench is written and ran on the Veloce server and the design under test (DUT) is on

the emulator. There are a couple of options on how to do this, but the fact is that it allows for a more

dynamic testing environment. These two methods and how to use them with this design are described

below.

Standalone Mode

TBX

File Structure

Source Code
The source code is found in the main folder under the folder named ‘src’. The system Verilog files for the

image processor and cell processor are here. The files needed for working with the Nexys 4 Xilinx board

can be found in the ‘Xilinx’ folder with files for a system built to work with any FPGA are found in

‘FPGATestDesign’. The folder named ‘Veloce’ contains files specific to working with the Veloce emulator.

Documentation
All documentation is found in the main folder under the folder named ‘doc’. It contains reference

designs, reference articles and papers, and, of course, the documentation for this design.

Version Control
The version control system chosen for this project was Git. Once the project is complete later this

summer, I will open up the Git repository for others to retrieve the project. Until then, I believe it is wise

to keep it private so that others do not meddle with it or copy the work. I am hoping to get a paper

published out of this and possible win a competition, so I don’t want the design taken by someone else

at this point either.

